Efficient ethanol production from paper mulberry pretreated at high solid loading in Fed-nonisothermal-simultaneous saccharification and fermentation
Zhaobao Wang,
Peng Ning,
Lihong Hu,
Qingjuan Nie,
Yiguo Liu,
Yonghong Zhou and
Jianming Yang
Renewable Energy, 2020, vol. 160, issue C, 211-219
Abstract:
Paper mulberry, a fast-growing and vigorous plant, is a potential substrate for producing lignocellulosic bioethanol and an important renewable alternative to fossil fuels. In order to improve the economic feasibility of ethanol production from paper mulberry, H3PO4/H2O2 pretreatment was selected as the most suitable pretreatment method that could produce the highest glucose concentration (131 g/L) compared with other pretreatments (73.2–89.3 g/L) at high solid loading. Whereafter, the final solid loading of H3PO4/H2O2 pretreatment was significantly increased to 40% (w/v) without any decrease in the final glucose concentration. Finally, a novel Fed-nonisothermal-simultaneous saccharification and fermentation was constructed using H3PO4/H2O2 pretreated paper mulberry, which bypassed the inhibition caused by paper mulberry solid and high temperature on the traditional simultaneous saccharification and fermentation, improving ethanol concentration (63.9 g/L), ethanol productivity (1.33 g/L/h) and ethanol yield (0.160 g/g-biomass) by 30.4%, 30.4% and 30.1%, respectively, compared to those obtained from SSF (simultaneous saccharification and fermentation) process. Thus, we have opened up a novel way to produce ethanol or other biofuels using the paper mulberry as an outstanding alternative substrate.
Keywords: Paper mulberry; Ethanol fermentation; High solid loading; Pretreatment; Fed-nonisothermal-SSF (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120310508
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:160:y:2020:i:c:p:211-219
DOI: 10.1016/j.renene.2020.06.128
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().