EconPapers    
Economics at your fingertips  
 

Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study

H.S. Arunkumar, Shiva Kumar and K. Vasudeva Karanth

Renewable Energy, 2020, vol. 160, issue C, 297-311

Abstract: This study presents the performance analysis of solar air heater in which spring shaped fins introduced beneath the absorber plate are investigated. Effects of spring fin wire diameter ratio, spring diameter ratio and helicoidal pitch ratio on the thermal performance for varying flow rates are analyzed. The results for thermo-hydraulic enhancement factor are studied and it is found that the spring fin produces greater turbulence inside the absorber duct while causing lesser resistance to flow. For varying helicoidal pitch ratio of spring fin, the Thermo-hydraulic enhancement factor and Nusselt number are found to be optimally high for a helicoidal pitch ratio of 0.133 for the entire range of Reynolds numbers. The Nusselt number rises with increase in spring wire diameter ratio. However, the thermo-hydraulic enhancement factor rises with increase in spring wire diameter ratio up to 0.093 and then drops due to higher flow resistance. The Nusselt number drops with increase in helicoidal spring diameter ratio. The thermo-hydraulic enhancement factor is substantially higher at 1.268 for helicoidal spring diameter ratio of 0.06 at lower Reynolds numbers. Correlations are developed for the spring geometric parameters in terms of Nusselt number and friction factor with a deviation of ±10% in terms of parity.

Keywords: Thermo hydraulic enhancement factor; Thermal efficiency; Solar air heater; Spring fin; Correlation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120310156
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:160:y:2020:i:c:p:297-311

DOI: 10.1016/j.renene.2020.06.098

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:297-311