Power feedback strategy based on efficiency trajectory analysis for HCPV sun tracking
Manuel G. Satué,
Fernando Castaño,
Manuel G. Ortega and
Francisco R. Rubio
Renewable Energy, 2020, vol. 161, issue C, 65-76
Abstract:
This paper presents a control strategy for sun trackers which adapts continuously to different sources of error, avoiding the necessity of any kind of calibration by analyzing the produced electric power to sense the position of the Sun. The proposed strategy is able to meet the strict specifications for HCPV sun trackers despite of mechanical uncertainties (misalignments in the structure itself, misalignment of the solar modules with respect to the wing, etc.) and installation uncertainties (misalignments of the platform with respect to geographical north). Experimental results with an industrial-grade solar tracker showing the validity of the proposed control strategy under sunny and moderate cloudy conditions, as well as with different installation precisions by un-calibrating the system on purpose are exposed.
Keywords: Sun tracker; HCPV; Sun tracking strategy; Efficiency enhancement (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120309253
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:161:y:2020:i:c:p:65-76
DOI: 10.1016/j.renene.2020.06.031
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().