EconPapers    
Economics at your fingertips  
 

Recent development and research priorities on cool and super cool materials to mitigate urban heat island

M. Santamouris and Geun Young Yun

Renewable Energy, 2020, vol. 161, issue C, 792-807

Abstract: The urban heat island is increasing the temperature of cities up to 10 °C and has a very important impact on energy, environmental quality and health. Materials used in the building and urban fabric affect the urban thermal balance and contribute highly to urban overheating. The article presents the progress achieved on the design, development and implementation of mitigation materials presenting a low and very low surface temperature. The recent technological progress and developments concerning natural, light colour, IR reflective, PCM doped, thermochromic, fluorescent, photonic and plasmonic materials is presented. Experimental results on the cooling capacity and the thermal performance of conventional and advanced materials are described in a comparative way. It is demonstrated that innovative materials can exhibit sub-ambient surface temperatures and contribute highly to mitigate urban overheating.

Keywords: Urban heat island; Mitigation; Cool materials; Thermochromic materials; Photonic materials; Fluorescent materials (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812031185X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:161:y:2020:i:c:p:792-807

DOI: 10.1016/j.renene.2020.07.109

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:792-807