Efficient and environmentally-friendly dehydration of fructose and treatments of bagasse under the supercritical CO2 system
Qinghua Ji,
Haonan Jiang,
Xiaojie Yu,
Abu El-Gasim A. Yagoub,
Cunshan Zhou and
Li Chen
Renewable Energy, 2020, vol. 162, issue C, 1-12
Abstract:
The ability of supercritical/subcritical carbon dioxide (SC/Sub-CO2) to catalyze the production of 5-hydroxymethylfurfural (5-HMF) from fructose was studied in this paper. The optimal conditions for the conversion in SC/Sub-CO2 systems were determined, and sugarcane bagasse (SCB) was pretreated with SC-CO2 using 1-butyl-3-methylimidazolium acetate ([Bmim]OAc). Structural analysis of SCB samples was done by Fourier transform infrared (FT-IR), X-ray Diffractometer (XRD), Thermal gravimetric (TG), Solid state nuclear magnetic resonance (13C NMR) and scanning electron microscope (SEM) analyses. The contents of sugars in the acid and enzymatic hydrolysates were measured. The results showed that the optimum fructose conversion conditions of the SC-CO2/[Bmim]Cl system were 9 MPa, 120 °C and 0.5 h and the Sub-CO2/H2O system were 6 MPa, 180 °C and 2 h. Besides, SC-CO2/[Bmim]OAc was the most effective pretreatment process, with the lignin and hemicellulose removal rates in SCB being 8.78 and 4.83% respectively. FT-IR, SEM, XRD and TG analysis indicated that the SC-CO2/[Bmim]OAc pretreatment changed surface morphology, increased crystallinity and decreased thermal stability of SCB. Moreover, the yield of reducing sugars obtained by enzymatic and acid hydrolysis increased by 12.57 and 22.04%, respectively. The energy balance showed that SC-CO2/[Bmim]OAc pretreatment was efficient to increase the energy output of SCB.
Keywords: Supercritical/subcritical carbon dioxide; Pretreatment; Sugarcane bagasse; Hydrolysis; Ionic liquid; 5-Hydroxymethylfurfural (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812031199X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:1-12
DOI: 10.1016/j.renene.2020.07.123
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().