EconPapers    
Economics at your fingertips  
 

Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm

Jianming Hu, Jiani Heng, Jiemei Wen and Weigang Zhao

Renewable Energy, 2020, vol. 162, issue C, 1208-1226

Abstract: Wind energy has become a kind of attractive alternative energy in power generation field due to its nonpolluting and renewable properties. Wind speed forecasting acts an important role in programming and operation of power systems. However, achieving high precision wind speed forecasts is still consider as an arduous and challenging issue with the randomization and transient exist in wind speed time series. For this reason, this paper proposed two novel de-noising-reconstruction-based hybrid models which consist of novel signal decomposed methods, feature selection approaches and predictors based on quantile regression and optimization algorithm to achieve more accurate short term wind speed forecasting. The developed hybrid models firstly eliminate inherent noise from the wind speed sequences via decomposed method and subsequently construct the appropriate datasets for the forecasting engines by adopting the feature selection method; finally, establish the predictors for the forecasting task. To verify the effectiveness of proposed forecasting models, 1-h and 2-h wind speed data collected from Yumen, Gansu province of China mainland is used as case studies. The computational results demonstrated that the developed hybrid models yield better performance contrast with those of other models involved in this research in terms of both wind speed deterministic and probabilistic forecasting.

Keywords: Renewable energy; Complete empirical mode decomposition with adaptive noise; Quantile regression neural network; Wind speed forecasting; Distance correlation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120313227
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:1208-1226

DOI: 10.1016/j.renene.2020.08.077

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1208-1226