Unified engineering models for the performance and cost of Ground-Gen and Fly-Gen crosswind Airborne Wind Energy Systems
Filippo Trevisi,
Mac Gaunaa and
Michael McWilliam
Renewable Energy, 2020, vol. 162, issue C, 893-907
Abstract:
This paper presents analytic equations modelling the main physics and cost of a generic Airborne Wind Energy System flying crosswind. The power equation of a system that can handle ground and on-board generation is presented, under the assumption of steady-state flight. A structural and a take-off model are used to derive the key equations for the flying mass estimation of a hard-wing kite. A modification of the power equation is carried out to show how to include gravitation forces in the power estimation. Finally, an economic model is introduced. The model presented in this paper is intended to describe the key behavior of the system based on basic principles. It is suitable to be coupled with system design tools.
Keywords: AWES; Generic airborne wind energy system; Mass model; Take-off model; Gravitational power losses; Cost model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120312052
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:893-907
DOI: 10.1016/j.renene.2020.07.129
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().