A design on sustainable hybrid energy systems by multi-objective optimization for aquaculture industry
Nhut Tien Nguyen,
Ryuji Matsuhashi and
Tran Thi Bich Chau Vo
Renewable Energy, 2021, vol. 163, issue C, 1878-1894
Abstract:
This paper presents an optimal design for sustainable hybrid energy systems for the aquaculture sector, which inherently requires intensive energy. The designed system is energized by renewable resources to produce pure oxygen in situ through water electrolysis for oxygenation according to the changes of dissolved oxygen of species under culture. Moreover, the by-product hydrogen from the electrolysis process is used to generate backup power for an eventual power failure. The mathematical models of the system were developed for simulation and optimization to assess the performance of the system regarding technical, economic, and environmental aspects as multi-objective functions in autonomous mode as well as on-grid mode. The merits of the proposed system are demonstrated at a shrimp farm. Furthermore, the optimal results and their sensitivity analysis showed that the sustainable hybrid energy system operating in grid-connected mode, which possesses such attractive features as producing onsite pure oxygen for oxygenation and utilizing the by-product hydrogen for generating backup power, could bring significant benefits for farmers thanks to a notable reduction in the annualized cost of the system as well as CO2 emission in comparison with the conventional system, which is powered by the national grid to run common paddlewheel aerators for oxygenation.
Keywords: Aeration; Onsite pure oxygen; Electrolyzer; Renewable energy; Fuel cell; By-product hydrogen (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120315901
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:1878-1894
DOI: 10.1016/j.renene.2020.10.024
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().