Validating simulated mountain wave impacts on hub-height wind speed using SoDAR observations
Geng Xia,
Caroline Draxl,
Ajay Raghavendra and
Julie K. Lundquist
Renewable Energy, 2021, vol. 163, issue C, 2220-2230
Abstract:
The ascent of stably stratified air over a mountain barrier can trigger the generation of mountain waves. Mountain waves occur frequently over the Columbia River Gorge in western North America and can impact wind power generation over the area. Therefore, predicting the details of mountain waves events (e.g., dominant wavelength, timing, and duration) can be very valuable for the wind energy community. In this study, the ability of the Weather Research and Forecasting (WRF) model to simulate mountain waves and their impact on hub-height wind speed is investigated. Our results suggest that the WRF model has moderate skill in simulating observed mountain wave. Further, given WRF predictions of wavelength range and wave period, the Fast Fourier Transform can calculate the simulated mountain wave impact on hub-height wind speed. The resulting wind speeds agree well with SoDAR observations in terms of both magnitude and pattern. Finally, for the simulated cases, WRF consistently predicts impacts of significant mountain wave events about an hour earlier than the actual observations. The sensitivities as well as uncertainties associated with our methodology are discussed in detail.
Keywords: Mountain wave; WRF modeling; Wind forecasting; Fourier filtering (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120316992
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:2220-2230
DOI: 10.1016/j.renene.2020.10.127
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().