Thermal response test analysis for U-pipe vertical borehole heat exchangers under groundwater flow conditions
Teresa Magraner,
Álvaro Montero,
Antonio Cazorla-Marín,
Carla Montagud-Montalvá and
Julio Martos
Renewable Energy, 2021, vol. 165, issue P1, 391-404
Abstract:
Conventional models used in the analysis of thermal response test data only consider conduction as heat transfer mechanism. In cases where presence of groundwater is detected, convection heat transmission plays an important role, so its influence must be determined in the calculation of the effective thermal conductivity, usually overestimated in these situations, increasing its value the higher the power injected and the time elapsed. In this work, based on the data collected in a borehole located at UPV (València) in which have been carried out three thermal response tests with different characteristics, has been implemented a variation of the finite line source model introducing an expression for the effective thermal conductivity formed by two terms, one static unaffected by underground flow and another dynamic that depends on time. Analyzing the data in the model developed and in the finite line source and infinite line source models, the results show that the new model estimates accurately the conductivity value unaffected by underground flow regardless the power injected or the time elapsed in the test, with differences between the results obtained in the analysed tests and average thermal conductivity of 1,4%, compared to the conventional models in which this difference is 27%.
Keywords: Thermal response test (TRT) analysis; Geothermal heat exchanger; Ground water advection; Effective thermal conductivity; Borehole thermal resistance; Undisturbed ground temperature recovery (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120317705
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:165:y:2021:i:p1:p:391-404
DOI: 10.1016/j.renene.2020.11.029
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().