Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties
Ting Zhang,
Tuodi Zhang,
Jing Zhang,
Deyi Zhang,
Pengran Guo,
Hongxia Li,
Chunlei Li and
Yi Wang
Renewable Energy, 2021, vol. 165, issue P1, 504-513
Abstract:
The large-scale commercial application of phase change materials (PCMs) was seriously limited by the leakage, poor heat storage capacity and slow thermal response behavior. To address these issues, stearic acid/graphene oxide-attapulgite aerogel (SA/HGA-ATP) shape-stabilized PCMs were fabricated via hydrothermal method. The morphology, structural characteristics, thermal properties were determined and the effects of ATP percentage on the thermal properties of confined SA were studied synchronously. The nanofibers of ATP intercalated among GO sheets via grafting modification and formed fiber-bridging 3D-network. Due to the enhanced loading interspaces and suppressed volumetric shrinkage of hybrid matrix, SA/HGA-ATP exhibited excellent thermal energy storage capacity (190.9 J g−1) and ultra-high SA contents (approx. 98 wt%) without leakage. The intercalated nanofibers sheltered the oxygen-containing groups of matrices, leading to the promotion of thermal energy storage performance with increase of ATP contents. Besides, the as-prepared PCMs displayed outstanding thermal response behavior because the interconnected and fiber-bridged matrices provided continuous thermal transfer pathway. Due to the protection of matrix, the composite PCMs also exhibited superior structure stability and incomparable thermal energy storage/release reliability. Considering the outstanding thermal-physical properties and low-cost of ATP, the SA/HGA-ATP has the potential to be applied in the fields of thermal energy storage, conversion and utilization.
Keywords: Attapulgite; Graphene oxide; Phase change material; Thermal energy storage; Thermal reliability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120317717
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:165:y:2021:i:p1:p:504-513
DOI: 10.1016/j.renene.2020.11.030
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().