EconPapers    
Economics at your fingertips  
 

Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield

Xianchun Jin, Jiangshan Ma, Jianing Song and Gao-Qiang Liu

Renewable Energy, 2020, vol. 166, issue C, 117-124

Abstract: Enzyme production as well as rice straw saccharification and fermentation were integrated to produce bioethanol in this study. Submerged fermentation of Na2CO3 pretreated rice straw to produce a complex enzyme for saccharification by Aspergillus fumigatus was performed. The major component of rice straw, that is cellulose, hemicellulose and lignin was almost completely degraded in 24 h. Using whole pretreated rice straw slurry as the substrate, the maximum concentrations of reducing sugar and ethanol were obtained with values of 63.6 g/L and 30.9 g/L, respectively, in a total hydrolysis and fermentation time at a substrate concentration of 8% (based on the original amount of rice straw). Fed-batch fermentation was employed for enzymolysis and fermentation of rice straw residue. Under a 32% total substrate concentration, 108.6 g/L ethanol was obtained in a total enzymolysis and fermentation time of 40 h. The results from different fermentation methods showed that the laccase produced by A. fumigatus in situ could effectively promote the enzymatic hydrolysis and fermentation through detoxifying the phenols produced during pretreatment and by the enzymatic hydrolysis processes.

Keywords: Bioethanol; Complex enzyme; Detoxification; Laccase; Saccharification; Submerged fermentation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120318796
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:166:y:2020:i:c:p:117-124

DOI: 10.1016/j.renene.2020.11.127

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:166:y:2020:i:c:p:117-124