EconPapers    
Economics at your fingertips  
 

Performance enhancement of an integrated collector storage hot water system

Soteris A. Kalogirou

Renewable Energy, 1999, vol. 16, issue 1, 652-655

Abstract: Integrated collector storage (ICS) systems offer a solution to reduce the height of the conventional flat-plate thermosiphon type collectors. The initial system developed had an aperture area of 1.77 m2, a receiver diameter of 200 mm, a concentration ratio of 1.47 and total water storage volume of 65 litres. The main disadvantage of the ICS systems comes from their design, i.e., because the collector absorber is also the storage cylinder it is not possible to insulate it properly and therefore there are significant losses during the night. The main cause of these losses is the convection currents created during the night, circulating around the top glass cover. Another disadvantage of the system is its draw-off characteristics. Because the water cylinder/absorber is horizontal there is very little stratification of the water in the cylinder. It is suggested that a primary 110 mm diameter cylinder is introduced at the space between the main cylinder and the glass. The cold water is introduced directly to the primary cylinder, which feeds the main cylinder. With this modification the convection currents are drastically reduced due to the obstruction created by the primary vessel, thus reducing the night thermal losses. Also as the cold water is introduced first to the primary cylinder there is no direct mixing of the two streams thus greatly improving the system draw-off characteristics. This modification creates an 8% increase in the total cost of the system, which is reasonable, if the above benefits are considered

Keywords: Integrated collector storage system; hot water production; convection suppression (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148198002456
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:16:y:1999:i:1:p:652-655

DOI: 10.1016/S0960-1481(98)00245-6

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:16:y:1999:i:1:p:652-655