Near-room temperature transesterification over bifunctional CunO-Bs/SBA-15 catalyst for biodiesel production
Ningmeng Hu,
Ping Ning,
Liang He,
Qingqing Guan,
Yuzhen Shi and
Rongrong Miao
Renewable Energy, 2021, vol. 170, issue C, 1-11
Abstract:
The transesterification of triglycerides is a critical step in biodiesel production. In this work, by loading boron-doped copper oxides onto SBA-15 mesoporous molecular sieve, an acid-base bifunctional catalyst (i.e., CunO-Bs/SBA-15) was prepared and applied to triglyceride transesterification. Compared with pure copper, sodium or boron oxides-based catalysts, CunO-Bs/SBA-15 enabled a higher biodiesel yield (>97.5%) at near room temperature (i.e., 40 °C) in 120 min. The characterization results showed that after B doping, the CunO-Bs/SBA-15 catalyst contained highly-dispersed acid-base sites without blocking the channels of porous SBA-15 support, which had good catalytic performance. Finally, in-situ DRIFTS was used to reveal the catalytic mechanism of the acid-base bifunctional groups of the as-prepared CunO-Bs/SBA-15 during transesterification.
Keywords: CunO catalyst; Boron doping; Acid-base bifunctional; Biodiesel; Transesterification (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121001257
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:170:y:2021:i:c:p:1-11
DOI: 10.1016/j.renene.2021.01.118
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().