3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer
Tarik Hadibi,
Abdelghani Boubekri,
Djamel Mennouche,
Abderrahmane Benhamza and
Naji Abdenouri
Renewable Energy, 2021, vol. 170, issue C, 1052-1069
Abstract:
The current study aims to explore the hybrid solar-electric drying (HSED) of garlic cloves, tests were carried out at three different temperatures 50, 60 and 70 °C under natural convection mode and forced convection mode. Drying air velocity of 4.1 and 6.9 m s−1 have been studied experimentally in forced convection mode. Midilli-Kucuk model can be used to predict the drying behaviour of garlic cloves. The energy payback time of the forced convection dryer are 0.62 and 0.32 years and the net CO2 mitigation was 72.61 and 140.81 ton for air velocity of 4.1 and 6.9 m s−1, respectively. The highest exergy efficiency of 89.86% was achieved at 50 °C drying temperature in natural convection, with a range of 69.61–89.86%. The highest environmental impact factor of 40.35 was observed for the lowest exergy efficiency. The proposed HSED in Algeria has a significant payback period of only 0.08 years compared to Morocco with 0.7 years. The effect of air velocity on the total phenol compound and 2-diphenyl-1-picryl hydrazyl (DPPH) was found to be significant, and the highest values were recorded for HSED under natural convection mode. The proposed HSED in Algeria was found to be sustainable both environmentally and economically.
Keywords: Garlic; Hybrid solar-electric dryer; Energy analysis; Exergy; Payback period; Phenol and DPPH (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121001968
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:170:y:2021:i:c:p:1052-1069
DOI: 10.1016/j.renene.2021.02.029
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().