EconPapers    
Economics at your fingertips  
 

Modeling of runaway inhibition in batch reactors using encapsulated phase change materials

Qiang Chen, Lei Ni, Juncheng Jiang and Qingsheng Wang

Renewable Energy, 2021, vol. 170, issue C, 387-399

Abstract: Thermal runaway is a common hazard leading to process safety-related accidents. Uncontrolled release of chemical energy poses extreme risks for batch reactors. In this study, we fabricated encapsulated phase change materials (PCMs) with silica shells as inhibitors to improve the thermal management of reactors and mitigate reaction thermal runaway. The prepared encapsulated PCMs had core-shell microstructures and spherical morphologies, with an average particle diameter of 980 nm and a silica shell thickness of 100 nm. A series of inhibition experiments were conducted with 0.5 and 1 g of encapsulated PCMs. Three stages were identified from the inhibition experiments. Kinetic parameters of esterification of propionic anhydride with 2-butanol, catalyzed by sulfuric acid, were estimated based on an autocatalytic parallel reaction model. An inhibition effect-kinetic model was proposed to simulate the inhibition process of the thermal runaway reaction. The results revealed that thermal storage and heat transfer intensification of encapsulated PCMs play a crucial role in the inhibition process. The effect of stirring rate, dispersity of encapsulated PCMs, and warning temperature of thermal runaway while optimizing the injection strategy of inhibitors was assessed. The inhibition of thermal runaway under adiabatic conditions was relatively low.

Keywords: Phase change materials; Thermal runaway; Reaction inhibition; Heat transfer (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121001452
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:170:y:2021:i:c:p:387-399

DOI: 10.1016/j.renene.2021.01.132

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:170:y:2021:i:c:p:387-399