EconPapers    
Economics at your fingertips  
 

Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression

Luis David Avendaño-Valencia, Imad Abdallah and Eleni Chatzi

Renewable Energy, 2021, vol. 170, issue C, 539-561

Abstract: We propose a data-driven model to predict the short-term fatigue Damage Equivalent Loads (DEL) on a wake-affected wind turbine based on wind field inflow sensors and/or loads sensors deployed on an adjacent up-wind wind turbine. Gaussian Process Regression (GPR) with Bayesian hyperparameters calibration is proposed to obtain a surrogate from input random variables to output DELs in the blades and towers of the up-wind and wake-affected wind turbines. A sensitivity analysis based on the hyperparameters of the GPR and Kullback-Leibler divergence is conducted to assess the effect of different input on the obtained DELs. We provide qualitative recommendations for a minimal set of necessary and sufficient input random variables to minimize the error in the DEL predictions on the wake-affected wind turbine. Extensive simulations are performed comprising different random variables, including wind speed, turbulence intensity, shear exponent and inflow horizontal skewness. Furthermore, we include random variables related to the blades lift and drag coefficients with direct impact on the rotor aerodynamic induction, which governs the evolution and transport of the meandering wake. In addition, different spacing between the wind turbines and Wöhler exponents for calculation of DELs are considered. The maximum prediction normalized mean squared error, obtained in the tower base DELs in the fore-aft direction of the wake affected wind turbine, is less than 4%. In the case of the blade root DELs, the overall prediction error is less than 1%. The proposed scheme promotes utilization of sparse structural monitoring (loads) measurements for improving diagnostics on wake-affected turbines.

Keywords: Wind turbine; Fatigue; Wake; Uncertainty; Bayesian Gaussian process regression; Virtual sensing (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121001671
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:170:y:2021:i:c:p:539-561

DOI: 10.1016/j.renene.2021.02.003

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:170:y:2021:i:c:p:539-561