Changes in thermomechanical properties due to air and water cooling of hot dry granite rocks under unconfined compression
Zhennan Zhu,
Thomas Kempka,
Pathegama Gamage Ranjith,
Hong Tian,
Guosheng Jiang,
Bin Dou and
Gang Mei
Renewable Energy, 2021, vol. 170, issue C, 562-573
Abstract:
Water has been used as a working fluid injected into the hot reservoirs during the exploitation of deep geothermal energy, therefore, understanding the thermomechanical properties of reservoir rocks after water cooling is essential. For that reason, we have conducted a series of laboratory tests on air and water cooled granites from normal temperature to 600 °C, to reveal the changes in their thermomechanical properties. At 600 °C, the average values of uniaxial compressive strength, elastic modulus and P-wave velocity of water cooled granite decrease by 84.9%, 73.1% and 66.2%, which are 11.0%, 17.0% and 17.7% larger than those of air cooled granite. Through optical microscopic analysis, the microcrack density and average width of water cooled granite increase with thermal temperature and are 4.18 mm/mm2 and 54.62 μm at 600 °C, while the values of air cooled granite are only 1.97 mm/mm2 and 25.16 μm. We thus combined the deterioration of the macroscopic mechanical characteristics of air and water cooled granites with the propagation and development of microcracks. Supported by data from international literature, the changes in the thermomechanical characteristics of granite has been systematically compared to international literature, which is hoped to provide technical support for the geothermal energy exploitation.
Keywords: High temperature; Granite; Air and water cooling; Mechanical properties; Thermal damage; Microstructure (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121001865
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:170:y:2021:i:c:p:562-573
DOI: 10.1016/j.renene.2021.02.019
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().