Design and evaluation of flat plate solar collector equipped with nanofluid, rotary tube, and magnetic field inducer in a cold region
Mojtaba Bezaatpour and
Hadi Rostamzadeh
Renewable Energy, 2021, vol. 170, issue C, 574-586
Abstract:
Flat plate solar collectors lose a massive part of heat accumulated near the contact region because of the poor thermal characteristics of the working fluid. A new cost-effective design is numerically studied to cover up such deficiency by equipping the flat plate collector with revolutionary tubes and magnetic field inducer to affect Fe3O4/water working nanofluid in the collector tubes. Results substantiate that each of the applied rotary tubes and magnetic field inducer improves the convection mechanism in the tubes by circulating the flow inside the tubes and saves more of available solar energy. Results reveal that 27.8% and 10.44% of lost energy are restored in the solar collector equipped with the magnetic inducer and rotary tubes, respectively. Manipulating the flat plate collector by both rotary tubes and inducer is more influential in comparison with each individual method, and there is an optimal rotational speed in each magnetic field intensity to achieve the best performance. This hybrid technique increases the energetic performance of the plate solar collector from 44.4% to 61.7% which implies that roughly 300 W of the lost energy can be restored in the collector.
Keywords: Flat plate solar collector; Energy and exergy; Thermodynamics; Heat transfer; Magnetic nanofluid (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121001658
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:170:y:2021:i:c:p:574-586
DOI: 10.1016/j.renene.2021.02.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().