Well-to-wheel analysis of energy use and greenhouse gas emissions of acetone-butanol-ethanol from corn and corn stover
Melaku Desta,
Timothy Lee and
Han Wu
Renewable Energy, 2021, vol. 170, issue C, 72-80
Abstract:
One of the highest costs in bio-butanol production is the separation of butanol from the fermentation broth, which is composed of acetone, butanol, and ethanol. Instead of using butanol, researchers experimentally investigated the utilization of the acetone-butanol-ethanol (ABE) mixture in gasoline and diesel engines to promising results. However, there has been no well-to-wheel (WTW) study to determine the life cycle energy balance and greenhouse gas (GHG) emissions that covers the entire production process and use of ABE as a transportation fuel. In this study, the WTW analysis of ABE from two feedstocks (corn and corn stover-based) and their benefits in replacing a portion of gasoline or diesel with ABE is investigated. Results show that ABE could achieve 56–80% fossil fuel savings and 53–83% GHG emission reductions when compared to both gasoline and diesel. The WTW analysis indicated that ABE from both feedstocks has the potential to become as an alternative biofuel directly and as an additive blend for diesel or gasoline.
Keywords: Well-to-wheels; Energy balance; Greenhouse gas emissions; Corn-ABE; Corn stover-ABE (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121000860
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:170:y:2021:i:c:p:72-80
DOI: 10.1016/j.renene.2021.01.079
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().