Five-lump kinetic approach on biofuel production from refined rubber seed oil over Cu/ZSM-5 catalyst via catalytic cracking reaction
Haswin Kaur Gurdeep Singh,
Suzana Yusup,
Armando T. Quitain,
Bawadi Abdullah,
Abrar Inayat,
Mariam Ameen,
Kin Wai Cheah,
Mitsuru Sasaki,
Tetsuya Kida and
Yee Ho Chai
Renewable Energy, 2021, vol. 171, issue C, 1445-1453
Abstract:
The heavy utilization of fossil fuels and efforts to reduce carbon footprint worldwide led to the development of biofuels. Therefore, this paper investigates the kinetic study for the catalytic cracking reaction of refined rubber seed oil (RSO) for bio gasoline production using Cu/ZSM5 catalyst. The reaction was carried out at 440 ᵒC and at atmospheric condition within the WHSV range of 1.5–3.5 h−1 in a fixed bed reactor. The kinetic rate constants were estimated based on 3, 4 and 5 lumped models sequentially. In the 3-lump model, the RSO was converted mostly to organic liquid product (OLP) and only forming some undesired gas and coke. Both refined RSO and OLP contributed to the formation of gas and coke products in the 4-lump model. In the 5-lump model, the RSO and OLP both favoured gasoline production. The absence of gaseous product suggests that no secondary cracking reactions occurred in gasoline fractions, but coke deposition was formed due to condensation. The high R2 squared values suggest that the predicted model data was in good agreement with the experimental data.
Keywords: Lumped kinetic; Deactivation model; Discrete lumping; Catalytic cracking; Rubber seed oil; Biogasoline (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121002603
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:171:y:2021:i:c:p:1445-1453
DOI: 10.1016/j.renene.2021.02.085
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().