A sustainable process train for a marine microalga-mediated biomass production and CO2 capture: A pilot-scale cultivation of Nannochloropsis salina in open raceway ponds and harvesting through electropreciflocculation
Natarajan Mohan,
Polur Hanumantha Rao,
Annakkili Baskara Boopathy,
Ramasamy Rengasamy and
Senthil Chinnasamy
Renewable Energy, 2021, vol. 173, issue C, 263-272
Abstract:
Major challenges in cultivation, harvesting, CO2 capture and downstream processing of microalgae biomass have to be confronted for successful commercial deployment. This study explored a sustainable process train to mass-produce a native marine algal strain, Nannochloropsis salina, for biocrude production and CO2 capture. The microalga was cultivated in a 3-m2 raceway pond with manual agitation, 10-m2 raceway ponds with and without CO2 supplementation and a 120-m2 pond with CO2 supplementation using carbonation column reactor (CCR). During the above experiments, the areal productivities obtained ranged from 7.5 to 34.4 g m−2 d−1 and the lipid content was between 29 and 80%. This study also demonstrated a novel 10 KLPD (kilolitres per day) capacity electropreciflocculation (ePF) reactor (∼0.56–0.78 KWh/KL) and filter press for biomass harvesting with 98.24% efficiency. The CO2 capture of N. Salina estimated was in the range of 45.38–208.12 tons ha−1 y−1, and the average was 95.39 tons ha−1 y−1. The cost estimated based on the 120-m2 pond trials was $3.46/kg of dry algal biomass. Thus the findings provide immense scope for future research on large-scale cultivation of Nannochloropsis salina for biofuel production and carbon capture applications.
Keywords: CO2 capture; Electropreciflocculation (ePF); Harvesting of microalgae; Nannochloropsis salina biomass; Open raceway pond (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121005115
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:173:y:2021:i:c:p:263-272
DOI: 10.1016/j.renene.2021.03.147
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().