EconPapers    
Economics at your fingertips  
 

A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast

Shaobo Yang, Zegui Deng, Xingfei Li, Chongwei Zheng, Lintong Xi, Jucheng Zhuang, Zhenquan Zhang and Zhiyou Zhang

Renewable Energy, 2021, vol. 173, issue C, 531-543

Abstract: Reducing the dependence on fossil fuels and utilizing the renewable energy have become essential due to the global resource exhaustion and unfriendly environmental impact from coal, petroleum and natural gas. Therefore, the rising attention has been paid to wave energy characterized by sustainability, clean, high energy density and extensive distribution. As one of the most important parameters of wave energy, significant wave height (SWH) is difficult to forecast accurately due to the complex marine condition and ubiquitous presence of chaos in nature. In this research, a novel hybrid model called STL–CNN–PE which combines seasonal-trend decomposition procedure based on loess (STL) and one-dimensional convolutional neural networks (CNN) with positional encoding (PE) was proposed to forecast SWH efficiently and accurately. To evaluate the proposed model comprehensively, the hourly standard meteorology data at station 44007, 46087 and 51000 from NOAA’s National Data Buoy Center were selected for model training and testing. The experimental results indicated that STL–CNN–PE provided more reliable forecasting values than the single model. Meanwhile, STL–CNN–PE had enormous advantage on speed and similar precision compared with EMD-LSTM. Finally, the experimental results revealed that the models provided better forecasting metrics at deeper waters.

Keywords: Significant wave height; Forecast; STL; Convolutional neural networks; Positional encoding (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812100522X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:173:y:2021:i:c:p:531-543

DOI: 10.1016/j.renene.2021.04.010

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:531-543