EconPapers    
Economics at your fingertips  
 

Internal hydro- and wind portfolio optimisation in real-time market operations

Hans Ole Riddervold, Ellen Krohn Aasgård, Lisa Haukaas and Magnus Korpås

Renewable Energy, 2021, vol. 173, issue C, 675-687

Abstract: In this paper aspects related to handling of intraday imbalances for hydro and wind power are addressed. The definition of imbalance cost is established and used to describe the potential benefits of shifting from plant-specific schedules to a common load requirement for wind and hydropower units in the same price area. The Nordpool intraday pay-as-bid market has been the basis for evaluation of imbalances, and some main characteristics for this market has been described. We consider how internal handling of complementary imbalances within the same river system with high inflow uncertainty and constrained reservoirs can reduce volatility in short-term marginal cost and risk compared to trading in the intraday market. We have also shown that the imbalance cost for a power producer with both wind and hydropower assets can be reduced by internal balancing in combination with sales and purchase in a pay-as-bid intraday market.

Keywords: Wind power; Reservoir hydro; Marginal cost; Balancing; Intraday; Pay-as-bid (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121005139
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:173:y:2021:i:c:p:675-687

DOI: 10.1016/j.renene.2021.04.001

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:675-687