Machine learning-based surrogate model for accelerating simulation-driven optimisation of hydropower Kaplan turbine
Zahid Masood,
Shahroz Khan and
Li Qian
Renewable Energy, 2021, vol. 173, issue C, 827-848
Abstract:
In this work, a data-driven technique is proposed for efficient design exploration and optimisation of the Kaplan turbine. To avoid the curse of dimensionality, the proposed approach commences with the extraction of latent features of a parametric design space, which form a lower-dimensional subspace accumulating maximum geometric variability of designs. Afterwards, this subspace is exploited for the construction of a Gaussian Process-based surrogate model using an adaptive training strategy to infer the relative-tangential velocities at the leading and trailing edges of the turbine. The training strategy is structured on a high-fidelity sampling approach to ensure a notable prediction accuracy with a few training samples. After training, the surrogate model is integrated with an optimiser to explore the subspace for an optimal design and to determine the sensitivity of design parameters. The results showed that the optimal design generated with the proposed method increases the efficiency of the initial design from 56.98% to 90.73% at a significantly low computational cost. Finally, the convergence performance is verified with different experimentation and its accuracy to extract latent features and to predict the relative-tangential velocity is demonstrated via a comparative study in which different state-of-the-art approaches are compared with the proposed approach.
Keywords: Renewable energy; Hydropower plants; Kaplan turbine; Shape optimisation; Surrogate model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121005176
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:173:y:2021:i:c:p:827-848
DOI: 10.1016/j.renene.2021.04.005
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().