EconPapers    
Economics at your fingertips  
 

Distinct Miscanthus lignocellulose improves fungus secreting cellulases and xylanases for consistently enhanced biomass saccharification of diverse bioenergy crops

Peng Liu, Ao Li, Youmei Wang, Qiuming Cai, Haizhong Yu, Yuqi Li, Hao Peng, Qian Li, Yanting Wang, Xiaoyang Wei, Ran Zhang, Yuanyuan Tu, Tao Xia and Liangcai Peng

Renewable Energy, 2021, vol. 174, issue C, 799-809

Abstract: Bioenergy crops provide enormous renewable biomass resources convertible for biofuel production, but lignocellulose recalcitrance fundamentally determines its enzymatic saccharification at high cost and low efficiency. In this study, total 30 diverse Miscanthus lignocellulose substrates were incubated with T. reesei strain to secret lignocellulose-degradation enzymes, and their major wall polymers features (cellulose crystallinity, hemicellulose arabinose and lignin H-monomer) were meanwhile examined with distinct impacts on the enzyme activities. Using characteristic Miscanthus (Msi62) de-lignin residue as inducing substrate with the reesei strain, this study detected that the Msi62-induced enzymes were of consistently higher enhancements on enzymatic saccharification of various lignocellulose residues examined in 17 grassy and woody bioenergy crops, particularly for the hemicellulose hydrolyses, compared to other two reesei-secreted cellulases and three commercial enzymes. Notably, based on SDS-gel protein separation profiling and LC-MS/MS analysis, the Msi62-induced enzymes consist of distinct cellulases (CBHI, BG, EGII) compositions and high-activity xylanases. Therefore, this study has demonstrated an applicable approach to achieve the optimal cellulases and xylanases cocktails that enable for low-costly and high-efficient enzymatic saccharification of diverse lignocellulose sources, providing a potential strategy for large-scale biofuel production in all major bioenergy crops.

Keywords: Cellulases; Xylanases; Biomass saccharification; Trichoderma reesei; Miscanthus; Bioenergy crops (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121006273
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:174:y:2021:i:c:p:799-809

DOI: 10.1016/j.renene.2021.04.107

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:799-809