EconPapers    
Economics at your fingertips  
 

Simulation of the diffusion behavior of water molecules in palm oil and mineral oil at different temperatures

Qinpan Qiu, Jingwen Zhang, Lu Yang, Jinzhu Zhang, Binghao Chen and Chao Tang

Renewable Energy, 2021, vol. 174, issue C, 909-917

Abstract: The presence of moisture accelerates the aging of oil-paper insulation systems and reduces the insulating performance. In this study, the molecular dynamics method was used to investigate the diffusion behavior of water molecules in palm oil and compared with the diffusion behavior of water molecules in mineral oil. The mineral oil-water mixture model and vegetable oil-water mixture model were established; then, molecular dynamics calculations were performed on the established models from 323 K to 363 K. The free volume, diffusion coefficient, number of hydrogen bonds and interaction energy were analyzed. The results showed that the diffusion of water molecules in the two oils was gradually increased with increasing temperature, but the diffusion capability of water molecules in mineral oil was about 1.5–2 times higher than that in palm oil. In addition, the effect of temperatures on water molecules diffusion was found to be greater in mineral oil. This occurs because hydrogen bonds can be formed between palm oil and water molecules, which enhances the binding energy between palm oil and water molecules; moreover, palm oil provides less free space for diffusion of water molecules compared with mineral oil. Thus limiting the diffusion of water molecules in palm oil. Furthermore, because palm oil has a strong adsorption capacity for water molecules, and the water solubility of palm oil is relatively large, therefore, it is beneficial to increase the breakdown voltage of palm oil.

Keywords: Palm oil; Mineral oil; Molecular simulation; Hydrogen bond; Interaction energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121006534
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:174:y:2021:i:c:p:909-917

DOI: 10.1016/j.renene.2021.04.133

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:909-917