EconPapers    
Economics at your fingertips  
 

Development of a pretreatment method based on Fenton-like reaction combined with hydrodynamic cavitation for lipid extraction from wet microalgae

Ilgyu Lee and Jong-In Han

Renewable Energy, 2021, vol. 175, issue C, 415-421

Abstract: Microalgal biorefineries, a green alternative to traditional refineries, require integrated processes and are economically viable, for the much-anticipated commercialization of microalgae-derived products. This study demonstrated that cell disruption for lipid extraction could be effectively performed using wet microalgae harvested with ferric chloride by combining a Fenton-like reaction with hydrodynamic cavitation (HC). HC boosted the already powerful Fenton-like reaction even further through cavitation and its resultant increases in temperature and mixing intensity. The extraction efficiencies for lipids and chlorophyll increased from 43.1% to 77.4%, and from 22.4% to 97.2%, respectively, and depended on the pH and hydrogen peroxide concentration. Statistical analysis showed that not only mild but also optimum condition suitable for both lipid extraction and chlorophyll removal was 0.79% hydrogen peroxide at pH 3.41; under these conditions, the simulated lipid yield was estimated to be 70.4% with 82.8% chlorophyll removal. Despite the advantages of process integration and high lipid extraction rates, the extracted lipids appeared highly viscous and substantially stickier than the products of conventional methods, likely due to the presence of residual iron particles. In conclusion, the Fenton-HC reaction offers a workable alternative for lipid extraction from wet microalgae, particularly when microalgae are harvested by ferric chloride-based flocculation.

Keywords: Microalgae; Fenton-like reaction; Hydrodynamic cavitation; Lipid extraction; Chlorophyll removal; Response surface methodology (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121006509
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:175:y:2021:i:c:p:415-421

DOI: 10.1016/j.renene.2021.04.130

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:415-421