EconPapers    
Economics at your fingertips  
 

Heat transfer rate characteristics of two-phase closed thermosyphon heat exchanger

Wei Song, Changjin Zheng and Jiaming Yang

Renewable Energy, 2021, vol. 177, issue C, 397-410

Abstract: Two-phase closed thermosyphon heat exchangers (TPCTs) have considerable potential for use in ground source heat pump systems. This paper proposes a new metal-polyethylene TPCT that uses water as the working fluid and is composed of a galvanized steel pipe and a polyethylene pipe. The heat transfer rate characteristics of the metal-polyethylene TPCT were studied using a constant-temperature water bath test bench. The experimental results show that the metal-polyethylene TPCT has the best heat transfer rate when the vacuum degree and filling ratio are 1.00 kPa and 12.5%, respectively. The average heat transfer rate increased as the temperature of the heat source and the flow rate of the cooling water increased. Finally, a sandbox test bench was built, which provided seepage and non-seepage experimental conditions for the metal-polyethylene TPCT. In the sandbox experiment, the heat transfer rate capacity of the metal-polyethylene TPCT was initially studied and compared with that of a single U-tube heat exchanger, and the heat transfer rates were similar. When the evaporation section length was 0.5 m, the heat transfer rates were 34.89 W/m and 111.75 W/m under non-seepage and seepage conditions, respectively. The experimental results show that the metal-polyethylene TPCT is feasible as a new type of ground heat exchanger.

Keywords: Ground source heat pump; Two-phase closed thermosyphon heat exchangers; Sandbox test bench; Seepage; Heat transfer rate characteristics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121008302
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:177:y:2021:i:c:p:397-410

DOI: 10.1016/j.renene.2021.05.147

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:397-410