Enhanced energy and resource recovery via synergistic catalytic pyrolysis of byproducts from thermal processing of wastewater solids
Zhongzhe Liu,
Matthew Hughes,
Yiran Tong,
Jizhi Zhou,
William Kreutter,
Danny Valtierra,
Simcha Singer,
Daniel Zitomer and
Patrick McNamara
Renewable Energy, 2021, vol. 177, issue C, 475-481
Abstract:
Wastewater sludge drying and incineration are conventional solids handling processes that are sometimes employed in water resource reclamation facilities. However, these two processes generate byproducts, sludge drying chaff and sludge incinerator ash, which are landfilled without taking advantage of their value. To gain value from these byproducts, a new synergistic catalytic pyrolysis process using chaff and ash was investigated in this study to improve energy production (i.e. generating a high yield pyrolysis gas) and generate useful products. Ash was used as a catalyst to decrease bio-oil that is corrosive and challenging for combustion in standard equipment, while increasing pyrolysis gas yield and energy for easier energy recovery. Ash increased the pyrolysis gas yield by 50% and product energy by nearly two-fold at the highest ash loading. The bio-oil volume was greatly reduced and contained fewer constituents based on GC-MS and GC-FID analyses. The product energy shifted from bio-oil to pyrolysis gas, which is relatively clean and easier for onsite energy recovery. Ca and Fe content in ash likely plays the catalytic role.
Keywords: Biosolids; Biochar; Bio-oil; Sludge drying chaff; Sludge incinerator ash; Tar reduction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121008089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:177:y:2021:i:c:p:475-481
DOI: 10.1016/j.renene.2021.05.125
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().