EconPapers    
Economics at your fingertips  
 

Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications

Sheng-Chun Hu, Jie Cheng, Wu-Ping Wang, Guo-Tao Sun, Li-Le Hu, Ming-Qiang Zhu and Xiao-Hua Huang

Renewable Energy, 2021, vol. 177, issue C, 82-94

Abstract: Lacquer wood (LW) goes through one-step and two-step H3PO4 activation process to prepare activated carbons (ACs) at different temperature, and its performance was evaluated by testing CV, EIS, GCD and cycling respect to an electrode material in supercapacitors. The performance of lacquer wood activated carbon prepared by different activation methods and temperature (300, 400, 500, 600, 700, and 800 °C) was studied, and the influence on its electrochemical properties provides valuable guidance for the high-efficient energy utilization of lacquer wood. The results showed that the AC generated via one-step activation process at 400 °C demonstrate excellent specific surface area (SBET 1609.09 m2/g) than those from two-step activation method. Besides, the biomass-derived ACs presented overall better electrochemistry characteristic than those from charcoal-derived ACs. The largest specific capacitance (354 F/g) was obtained in the ACs-based electrodes which was generated from one-step activation process (activated at 600 °C). After 10000 cycles, its capacity retention reached 95.3%, which provides a meaningful guidance into the application of energy storage supercapacitors. This study proves that the LW derived ACs are promising electrodes of the high-performance supercapacitors, which is beneficial for value-added and industrial supercapacitors application of lacquer wood ACs.

Keywords: Lacquer wood; Activated carbon; Supercapacitor; Electrochemistry; Specific capacitance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121007965
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:177:y:2021:i:c:p:82-94

DOI: 10.1016/j.renene.2021.05.113

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:82-94