An advanced real-time dispatching strategy for a distributed energy system based on the reinforcement learning algorithm
Fanyi Meng,
Yang Bai and
Jingliang Jin
Renewable Energy, 2021, vol. 178, issue C, 13-24
Abstract:
A desirable dispatching strategy is essentially important for securely and economically operating of wind-thermal hybrid distribution systems. Existing dispatch strategies usually assume that wind power has priority of injection. For real-time control, such strategies are simple and easy to realize, but they lack flexibility and incur higher operation and maintenance (O&M) costs. This study analyzed the power dispatching process as a dynamic sequential control problem and established a Markov decision process model to explore the optimal coordinated dispatch strategy for coping with wind and demand disturbance. As a salient feature, the improved dispatch strategy minimizes the long-run expected operation and maintenance costs. To evaluate the model efficiently, a Monte Carlo method and the Q-learning algorithm were employed to the growing computational cost over the state space. Through a specified numerical case, we demonstrated the properties of the coordinated dispatch strategy and used it to address a 24-h real-time dispatching problem. The proposed algorithm shows high efficiency in solving real-time dispatching problems.
Keywords: Distribution system; Economic dispatch; Coordinated dispatching strategy; Real-time control; Markov decision process; Reinforcement learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121008983
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:178:y:2021:i:c:p:13-24
DOI: 10.1016/j.renene.2021.06.032
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().