EconPapers    
Economics at your fingertips  
 

Carbon nanofiber-supported tantalum oxides as durable catalyst for the oxygen evolution reaction in alkaline media

J.C. Ruiz-Cornejo, J.F. Vivo-Vilches, D. Sebastián, M.V. Martínez-Huerta and M.J. Lázaro

Renewable Energy, 2021, vol. 178, issue C, 307-317

Abstract: Active and durable electrocatalysts for the oxygen evolution reaction (OER), capable of replacing noble metal catalysts, are required to develop efficient and competitive devices within the frame of the water electrolysis technology for hydrogen production. In this work, we have investigated tantalum based catalysts supported on carbon nanofibers (CNF) for the first time. The effect of CNF characteristics and the catalyst annealing temperature on the electrochemical response for the OER have been analyzed in alkaline environment using a rotating ring disc electrode (RRDE). The best OER activity and oxygen efficiency were found with a highly graphitic CNF, despite its lower surface area, synthesized at 700 °C, and upon a catalyst annealing temperature of 800 °C. The ordering degree of carbon nanofibers favors the production of oxygen in combination with a low oxygen content in tantalum oxides. The most active catalyst exhibited also an excellent durability.

Keywords: Tantalum; Sodium tantalate; Oxygen evolution reaction; Carbon nanofiber; Electrocatalyst (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121009393
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:178:y:2021:i:c:p:307-317

DOI: 10.1016/j.renene.2021.06.076

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:307-317