Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution
Enli Liu,
Xue Lin,
Yuanzhi Hong,
Lan Yang,
Bifu Luo,
Weilong Shi and
Junyou Shi
Renewable Energy, 2021, vol. 178, issue C, 757-765
Abstract:
Graphitic carbon nitride (g-C3N4) with unique physicochemical features has garnered much attention in artificial photosynthesis, yet the photoactivity of pristine g-C3N4 (PCN) is severely restricted because of its rapid charge recombination rate and narrow visible-light absorption. To this end, for the first time, here we reported a rational one-step copolymerization strategy for the fabrication of carbon self-doped g-C3N4 (CCN) by using melamine and chitosan as the starting materials. Experimental results indicated that the bridged N atoms were substituted by C atoms in the g-C3N4 matrix, resulting in the formation of delocalized big π bonds, thereby the obviously increased the electrical conductivity, remarkably extended the visible-light absorption region, and significantly improved the mobility of photoinduced electron-hole pairs. Consequently, the as-engineered CCN with abundant mesopores structure showed a dramatically boosting photocatalytic H2-evolved activity (1224 μmol g−1 h−1), 4.5-folds than PCN powders. Eventually, the resulting CCN exhibited an extremely long-term durable stability after storing in reaction solution for 90 days. Our work will bring about potential application in designing of high-performance g-C3N4 photocatalyst for renewable solar-to-H2 conversion.
Keywords: g-C3N4; Chitosan; Carbon self-doped; Delocalized big π bonds; Photocatalytic H2 production; Solar-to-H2 conversion (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121009320
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:178:y:2021:i:c:p:757-765
DOI: 10.1016/j.renene.2021.06.066
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().