Effects of different pelleting technologies and parameters on pretreatment and enzymatic saccharification of lignocellulosic biomass
Chunxiao Gong,
Sune Tjalfe Thomsen,
Xianzhi Meng,
Yunqiao Pu,
Maria Puig-Arnavat,
Nathan Bryant,
Samarthya Bhagia,
Claus Felby,
Arthur J. Ragauskas and
Lisbeth Garbrecht Thygesen
Renewable Energy, 2021, vol. 179, issue C, 2147-2157
Abstract:
Densification of lignocellulosic biomass is beneficial for its logistics, and in some situations, also for its application in biorefineries. In this study, industrial pellets and laboratory-made pellets produced at different die temperatures (90, 125 °C) from wheat straw, beech, and pine were pretreated (by dilute acid and alkali) and enzymatically hydrolyzed to study the effects of pelleting on pretreatment and sugar yield. The results showed that industrial pelleting positively affected sugar yield of the three biomasses for both acid and alkaline pretreatments, while laboratory pelleting affected sugar yield differently related to pretreatment types and biomass species. Pelleting disturbed biomass cell wall structure and affected the stability of hemicellulose and β-O-4′ linkages in lignin. The extent of hemicellulose solubility during acid pretreatment and the amount of lignin β-O-4′ ether linkages present in acid pretreated substrates could serve as indicators of the effect of pelleting on sugar yield. The structural modifications caused by pelleting and their effects on the enzymatic sugar yield correlate tightly to pelleting technology, pretreatment method, and biomass species. The discrepant effects between industrial and laboratory pelleting on sugar yield observed in this study should be considered when designing future studies.
Keywords: Biomass pelleting; Biomass pretreatment; Enzymatic saccharification; Cellulose accessibility; Lignin characteristics (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121011988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:2147-2157
DOI: 10.1016/j.renene.2021.08.039
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().