EconPapers    
Economics at your fingertips  
 

New hybrid approach for short-term wind speed predictions based on preprocessing algorithm and optimization theory

Weicheng Hu, Qingshan Yang, Hua-Peng Chen, Ziting Yuan, Chen Li, Shuai Shao and Jian Zhang

Renewable Energy, 2021, vol. 179, issue C, 2174-2186

Abstract: Wind speed predictions are essential for wind power management and wind farm operation. However, due to the high volatility and nonstationarity of measured wind data, it is often difficult to achieve an accurate prediction. This study proposes a hybrid approach that consists of two stages, i.e., data preprocessing and wind speed predicting, to improve the accuracy of short-term wind speed prediction. A preprocessing algorithm for the transformation and standardization of hourly mean wind speed is utilized to remove the non-Gaussian distribution of wind data and diurnal nonstationarity. Several statistical models and artificial intelligence models are then adopted in the second stage of the prediction process, including a persistence model, autoregressive model, autoregressive moving average model and backpropagation neural network. The proposed approach is developed based on the weighted averaging of these models and error optimization theory. Finally, wind speed data for 12 months from two meteorological towers located in Yanan, China, are investigated to demonstrate the effectiveness and accuracy of the proposed approach for multistep wind speed predictions, and its performance is then compared with several existing prediction models. The results indicate that the prediction accuracy improves significantly after preprocessing with the proposed approach, outperforming all the existing aforementioned models.

Keywords: Wind speed; Short-term prediction; Transformation and standardization; Hybrid approach (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121012040
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:2174-2186

DOI: 10.1016/j.renene.2021.08.044

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:2174-2186