Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks
Hsu-Yung Cheng,
Chih-Chang Yu and
Chih-Lung Lin
Renewable Energy, 2021, vol. 179, issue C, 2300-2308
Abstract:
In this work, a day-ahead to week-ahead solar irradiance prediction mechanism based on convolutional Long Short-Term Memory (LSTM) model is proposed. The system takes hourly irradiance data from several days previous to the prediction day as the input. Then, features are extracted from the input data using one dimensional convolutional filters. The extracted features from different days are concatenated and serve as the input of the LSTM network. The output of the LSTM is further concatenated with selected original data to emphasize its importance and enhance the prediction results. Afterwards, a fully connected layer is used to produce the final prediction output. The proposed framework can be trained using a relatively small amount of training data within the duration of only two months. Therefore, it has the advantage of being applicable in the initial deployment phase when the amount of training data is limited. The proposed system has been validated using a highly challenging dataset collected in Taiwan with tropical and subtropical marine island climate.
Keywords: Solar energy; Irradiance prediction; Machine learning; Predictive models; Recurrent neural networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812101199X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:2300-2308
DOI: 10.1016/j.renene.2021.08.038
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().