EconPapers    
Economics at your fingertips  
 

Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines

Pavlos Trizoglou, Xiaolei Liu and Zi Lin

Renewable Energy, 2021, vol. 179, issue C, 945-962

Abstract: Offshore wind is a rapidly maturing renewable energy that has presented a large growth over the last decade. This increase in offshore wind capacity has led to the need for more effective monitoring strategies, as currently, Operation and Maintenance (O&M) costs make up to 30% of the overall cost of energy. This study presented a novel data-driven approach to condition monitoring systems by utilizing the existing Supervisory Control And Data Acquisition (SCADA) system and integrating a wide range of machine learning and data mining techniques namely: data pre-processing & re-sampling, anomalies detection & treatment, feature engineering, and hyperparameter optimization, to design a Normal Behaviour Model of the generator for fault detection purposes. An ensemble model of the Extreme Gradient Boosting (XGBoost) framework was successfully developed and critically compared with a Long Short-Term Memory (LSTM) deep learning neural network. The results showed that, in terms of temperature prediction, the proposed methodology captures a high level of accuracy at low computational costs. Moreover, it can be concluded that XGBoost outperformed LSTM in predictive accuracy whilst requiring smaller training times and showcasing a smaller sensitivity to noise that existed in the SCADA database.

Keywords: Fault detection; Offshore wind turbine; Feature engineering; XGBoost; LSTM (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121010909
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:945-962

DOI: 10.1016/j.renene.2021.07.085

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:945-962