Experiments in a solar simulator on solid desiccant regeneration and air dehumidification for air conditioning in a tropical humid climate
S Techajunta,
S Chirarattananon and
R.H.b Exell
Renewable Energy, 1999, vol. 17, issue 4, 549-568
Abstract:
This paper presents an indoor and analytical study to evaluate the performance of a desiccant cooling system that uses silica gel as desiccant, electric light bulbs to simulate solar radiation, and forced flow of air through an IDC (integrated Desiccant/Collector). In the regeneration process, the rate at which water is removed from the desiccant increases with irradiation and decreases with air flowrate. In the air dehumidification process, the adsorption rate decreases with irradiation and increases slightly with flowrate. Comparisons between analytical calculations and experimental data show good agreement, and the calculations show that it should be possible to operate this system in tropical humid climates using the regeneration process in the day and the air dehumidification in the night time.
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148198007769
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:17:y:1999:i:4:p:549-568
DOI: 10.1016/S0960-1481(98)00776-9
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().