Technical note Best connection scheme of collector modules of thermosyphon solar water heater operated at high temperatures
Adnan Shariah,
Deifallah Dajeh and
Nabil Malhi
Renewable Energy, 1999, vol. 17, issue 4, 573-586
Abstract:
Large scale thermosyphon solar water heater for high temperature applications is simulated by the use of the Transient Simulation Program (TRNSYS). A daily hot water load of 1500 l/day and 2500 l/day at 80°C was assumed. The hot water is consumed daily from 08·00–17·00 h. A back-up electric auxiliary heater was added to the system in two schemes: first, located inside the storage tank with a thermostat; second, outside the tank connected to the heating system between the tank and the facilities. The collector modules were connected in five different schemes: first, all collectors were connected in series in one line, or collectors were connected in two, three, four or five parallel lines each consisting of many collectors. The results showed that the best connection is when the 20 collectors, comprising the system, are connected in two parallel lines each consisting of 10 collectors. It was found that the monthly and yearly useful energy from the system was higher when the auxiliary water heater was added to the system outside the storage tank.
Keywords: Thermosyphon; Solar water heater; High temperature; Large scale; Auxiliary heater; Connection scheme; Series, parallel and mixed (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148198007666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:17:y:1999:i:4:p:573-586
DOI: 10.1016/S0960-1481(98)00766-6
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().