EconPapers    
Economics at your fingertips  
 

Interactions of high temperature H2S and HCl cleaning sorbents with biosyngas main components and testing in a pilot integrated biomass gasifier SOFC system

Alessandro Cavalli, Pradeep Chundru, Thomas Brunner, Ingwald Obernberger, Ilaria Mirabelli, Robert Makkus and Purushothaman Vellayani Aravind

Renewable Energy, 2021, vol. 180, issue C, 673-682

Abstract: High temperature biosyngas cleaning is more efficient when the end user operates at elevated temperature, as in biomass gasifier solid oxide fuel cell systems. However, there is not much experience with this technology and low temperature gas cleaning is usually adopted. This paper advances current knowledge by presenting the results from the investigation of side reactions catalysed by commercially available sorbents involving biosyngas main components, and the results obtained with the pilot plant developed within the Horizon2020 project “Flexifuel-SOFC”. K2CO3, used for HCl removal, appeared catalytically active towards the water gas shift reaction. Under conditions representative of a real system, the residence time was not sufficient for the gas composition to reach thermodynamic equilibrium. ZnO–CuO, used for H2S removal, showed a catalytic activity significantly higher. Both sorbents seemed not active towards the methanation reaction. The pilot plant tests confirmed the occurrence of the WGS reaction in the HCl removal reactor. The sorbents decreased H2S and HCl below the target value of 1 ppmv for H2S and 5 ppmv for HCl. The catalytic activity of sorbents and the heat released by these reactions should be carefully considered in the design phase of high temperature gas cleaning units.

Keywords: Biomass gasification; High temperature gas cleaning; Water gas shift reaction; Side reactions; Contaminants removal (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121012829
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:180:y:2021:i:c:p:673-682

DOI: 10.1016/j.renene.2021.08.114

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:673-682