Pyrolysis kinetics and product distribution of α-cellulose: Effect of potassium and calcium impregnation
Quoc Khanh Tran,
Thuan Anh Vo,
Hoang Vu Ly,
Byeongwan Kwon,
Kwang Ho Kim,
Seung-Soo Kim and
Jinsoo Kim
Renewable Energy, 2022, vol. 181, issue C, 329-340
Abstract:
Cellulose accounts for the largest proportion of lignocellulosic biomass. Herein, experimental and simulation studies are used to deeply understand the kinetic characteristics of the thermal decomposition of α-cellulose. The simulated data is in good agreement with the experimental data in the aspects of the conversion and the conversion rate versus temperature. The decomposition of α-cellulose, mainly occurring at 270–420 °C, induced an apparent activation energy ranging from 175.42 kJ/mol to 197.73 kJ/mol at a conversion of 10–90%. With 0.1–0.2 wt% K or Ca impregnation into the α-cellulose, the mean activation energy for pyrolysis was lowered (from 181.47 kJ/mol (for α-cellulose) to 141.11 kJ/mol (for 0.2 wt% K/α-cellulose) and 159.46 kJ/mol (for 0.1 wt% Ca/α-cellulose)) and higher amounts of liquid and gas products were produced. Furthermore, the addition of potassium and calcium increased the production of lower molecular weight components, such as furfural and its derivatives. The kinetic parameters of the α-cellulose pyrolysis were determined based on a nonlinear least-squares regression of the experimental data assuming first-order kinetics and correlated with the simulated result. The kinetic rate constants indicate that the predominant reaction pathway is from α-cellulose into a liquid product, rather than from α-cellulose into a gas product.
Keywords: Kinetic triplet; Micro tubing reactor; α-Cellulose; Alkali and alkaline earth metals; Activation energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121012660
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:181:y:2022:i:c:p:329-340
DOI: 10.1016/j.renene.2021.08.098
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().