EconPapers    
Economics at your fingertips  
 

Experimental study on activated carbon–nitrogen multi-stage thermal sorption compressors

N. Tzabar and A. Hamersztein

Renewable Energy, 2022, vol. 181, issue C, 666-674

Abstract: Heat powered cycles are of great interest as they enable reduced electric power consumption. Therefore, they can lower the load on electric power plants and distribution infrastructure. Many systems incorporate compressors for driving thermodynamic cycles and processes, and these compressors are usually electrically driven. In the framework of research on a sorption Joule-Thomson cryogenic cooler, a three-stage sorption compressor is designed, manufactured, and tested. The experimental results are reported and analyzed in the current manuscript. Nine experiments are reported, with one, two, and three compression stages, in which the experiments differ in the number of sorption cells at every compression stage and the operating conditions. The results of the experimental apparatus validate a numerical model and show the ability to construct and operate sorption compressors. All nine experiments operate with nitrogen, which is the required refrigerant in the cryogenics cooling system of the current research. Nitrogen is a weakly adsorbed gas, and so the reported efficiencies are relatively low, around 0.5% of the Carnot efficiency. However, the current work proves the technology's maturity and suitability for many other applications, especially where the required working fluids are more intensively adsorbed gases.

Keywords: Compressor; Thermal compressor; Heat powered cycle; Waste heat; Heat recovery; Solar power (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121013574
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:181:y:2022:i:c:p:666-674

DOI: 10.1016/j.renene.2021.09.059

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:666-674