A semi-coupled aero-servo-hydro numerical model for floating vertical axis wind turbines operating on TLPs
Ju Gao,
D. Todd Griffith,
Mohammad Sadman Sakib and
Sung Youn Boo
Renewable Energy, 2022, vol. 181, issue C, 692-713
Abstract:
Floating vertical axis wind turbines (VAWTs) have many advantages over floating horizontal axis wind turbines (HAWTs) at large scales in deep water; however, there are several key challenges to overcome as well. One of the challenges is accurate prediction of the dynamic motion and loads performance of a floating VAWT. A new semi-coupled aero-servo-hydro method is developed to assess dynamic responses of a floating VAWT by modeling the system as a 7-degree-of-freedom (7-DOF) model: the supporting platform is considered as a 6-DOF rigid body; the rotation of the rotor is considered as the 7th DOF. Aerodynamic, hydrodynamic, and mooring loads and control of the rotor speed are fully considered. This model can predict performance of floating VAWTs with reasonable fidelity according to validation with OrcaFlex through static and dynamic responses of a floating VAWT with Darrieus rotor operating on a new tension-leg platform (TLP). Being a reduced complexity model, the 7-DOF model can be efficiently applied to assess performance of the newly designed floating VAWT. This model is used to examine the relative contributions of aerodynamic and wave loads imparted to the floating system and the benefits of a three-bladed VAWT over a two-bladed VAWT through dynamic and fatigue analysis.
Keywords: Floating vertical axis wind turbine; 7-DOF model; Tension leg platform; Structural dynamics; Hydrodynamics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121013963
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:181:y:2022:i:c:p:692-713
DOI: 10.1016/j.renene.2021.09.076
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().