Energy, exergy and corrosion analysis of direct absorption solar collector employed with ultra-high stable carbon quantum dot nanofluid
Albin Joseph and
Shijo Thomas
Renewable Energy, 2022, vol. 181, issue C, 725-737
Abstract:
Nanofluid offers remarkable thermal and optical properties favourable for direct solar absorption. The nanofluids prepared by the conventional two-step synthesis method have low colloidal stability, while that synthesized through the one-step method is costly. Hence the nanofluid synthesized using an economical one-step method has great significance. In the present study, a highly stable C-dot/water nanofluid was synthesized using an economical one-pot synthesis method. The optical characterisation, corrosion analysis and cost estimation of the nanofluid were conducted. The influence of C-dot/water nanofluid on the performance of direct absorption solar collector was analyzed. The direct absorption parabolic solar collector employed with C-dot/water nanofluid yielded a maximum thermal efficiency of 73.41% at Reynolds number of 2952, while that for water was 15.79%. Thermodynamic analysis of the system and cost estimation of the nanofluid was performed to establish its commercial suitability in various solar thermal devices. The maximum exergy destruction was found to be 924.3 W and was more or less constant at all flow rates. The main highlight of the new C-dot/water nanofluid is its significantly high colloidal stability and was found to be stable for more than six months. The corrosion rate of the new C-dot/water nanofluid was obtained as 0.094 mm/year, while that for the base fluid was 0.372 mm/year. With superior optical performance, corrosion resistance, and low production cost, the C-dot nanofluid has the potential to be a prospective working fluid in various direct absorption solar thermal systems.
Keywords: C-Dot nanofluid; Direct absorption; Colloidal stability; Corrosion analysis; Energy and exergy analysis; Parabolic collector (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121014063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:181:y:2022:i:c:p:725-737
DOI: 10.1016/j.renene.2021.09.079
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().