Improvement of a phase change heat storage system by Blossom-Shaped Fins: Energy analysis
Y. Pahamli,
M.J. Hosseini,
S. Saedi Ardahaie and
A.A. Ranjbar
Renewable Energy, 2022, vol. 182, issue C, 192-215
Abstract:
The present paper introduces a novel latent heat storage system applicable to hot water systems equipped with a Phase Change Material (PCM) and a Novel set of Blossom-Shaped Fins (BSFs). The water supplied by the collector is injected into the heat exchanger as a Heat Transfer Fluid (HTF). The PCM is charged during the daytime and will be reused as a primary system to supply the building's heating load at nighttime. The system's performance is investigated for various geometrical parameters, including the fin-number, fin's degree of compactness, fin-height, and the combined-fin heights/pin. Moreover, thermodynamic optimization through exergy analysis is applied to give better insights into the system's performance and efficiency. Results imply that both the variations of the fin-number and the fin's degree of compactness improve the charging time by 17% and 2%, respectively. Moreover, the fin-number variations positively affect the exergy efficiency by 6%, while compactness of fins shows a converse behavior with an 8% reduction in the exergy efficiency. On the other hand, the fin height/pin parameter variations improve the melting performance by 15% while having fewer exergy efficiencies. In addition, reducing the fin-height parameter improves the exergy efficiency of the case with the least melting time by 25% while associated with the most prolonged melting duration. Hence, considering the different impacts of geometric parameters on the exergy efficiency and the storage time, one should pay attention to the designer's view and climate conditions to choose the suitable heat exchanger based on the desired application. If the storage time is limited, the combined fin height/pin is preferred. Otherwise, the fin-height might be a better candidate to achieve higher exergy efficiencies and system performance.
Keywords: Phase change material; Blossom-shaped fin; Blocking effect; Exergy efficiency; Entropy generation; Melting time (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121014798
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:182:y:2022:i:c:p:192-215
DOI: 10.1016/j.renene.2021.09.128
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().