Simultaneous saccharification isomerization and Co-fermentation – SSICF: A new process concept for second-generation ethanol biorefineries combining immobilized recombinant enzymes and non-GMO Saccharomyces
Ederson Paulo Xavier Guilherme,
Leticia Maria Zanphorlin,
Amanda Silva Sousa,
Renan Yuji Miyamoto,
Carlos Giovani Oliveira Bruziquesi,
Bruna Mara Aparecida de Carvalho Mesquita,
Sergio Henrique Sousa Santos,
Elizama Aguiar-Oliveira and
Junio Cota
Renewable Energy, 2022, vol. 182, issue C, 274-284
Abstract:
Integrated bioprocess strategies may facilitate ethanol production from both C6 and C5 fractions of lignocellulosic feedstocks. We propose a new process concept, SSICF, where sugarcane bagasse is hydrolyzed simultaneously with xylose isomerization and the co-fermentation of C6 and C5 sugars. A commercial cocktail was supplemented with our multi-enzymatic system composed of three recombinant enzymes immobilized in Feroxyhyte magnetic nanoparticles: β-glucosidase, β-xylosidase and xylose isomerase. SSICF was performed using non-GMO Saccharomyces at pH 6.0 and 35 °C for 72 h in a synthetic medium containing cellobiose and xylose, and another medium containing pretreated sugarcane bagasse (PSB). The results of ethanol global yields in SSICF were 77.67% and 73.24% for the synthetic medium and PSB, respectively. In a nutshell, this is the first report of a successful proof-of-concept of SSICF with four rounds of enzyme recycling and a non-GMO yeast, an innovative process with high potential for industrial use.
Keywords: Feroxyhyte; Enzyme co-immobilization; Biomass hydrolysate; Fermentation; Ethanol (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121014804
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:182:y:2022:i:c:p:274-284
DOI: 10.1016/j.renene.2021.10.023
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().