EconPapers    
Economics at your fingertips  
 

Research on the size optimization of photovoltaic panels and integrated application with Chinese solar greenhouses

Kai Zhang, Jihua Yu and Yan Ren

Renewable Energy, 2022, vol. 182, issue C, 536-551

Abstract: Currently, two main problems in the research of greenhouse and photovoltaic integrated applications exist: the photovoltaic board design is not driven by agricultural production demand, and an appropriate research model is lacking. Here, a sky illumination model is proposed that can not only explain greenhouse daylighting but also address the problem of photovoltaic shading. An optimal design scheme of grid photovoltaic panels to replace large photovoltaic panels is proposed, and the integrated application effect with Chinese solar greenhouses is simulated. Results showed that (1) the shading effect of a single photovoltaic strip with an appropriate width at a certain height above the ground was so small that it could nearly be ignored. (2) Such photovoltaic panels were arranged in grids at select intervals, and with an increased spacing width (from 0 to 20 cm), the light transmittance increased gradually (from 0 to 90%). (3) To integrate the grid photovoltaic panels with Chinese solar greenhouses, they did not completely block the sunlight, so they did not severely affect the greenhouse daylighting. The layout of such photovoltaic panels can be well adapted to Chinese solar greenhouse, and the scheme and the model can also be widely applied to other types of greenhouses.

Keywords: sky illumination model; Background brightness; Grid photovoltaic panels; Visible sky range; Integrated application (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121014889
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:182:y:2022:i:c:p:536-551

DOI: 10.1016/j.renene.2021.10.031

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:536-551