EconPapers    
Economics at your fingertips  
 

Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery

Oumnia El Fajri, Joshua Bowman, Shanti Bhushan, David Thompson and Tim O'Doherty

Renewable Energy, 2022, vol. 182, issue C, 725-750

Abstract: The predictive capabilities of blade-resolved unsteady Reynolds averaged Navier-Stokes (URANS) and detached eddy simulation (DES), the most commonly used hybrid RANS/large eddy simulation (LES) model, are assessed for hydrokinetic turbine performance and mean and turbulent flows in the intermediate-wake region, and results for a range of tip-speed ratio encompassing design and off-design conditions are analyzed to understand the wake recovery mechanism. The performance predictions compared within 5% of the experimental data. Both URANS and DES models performed reasonably well for the near wake predictions, where the errors were <15%. DES outperformed URANS for both mean wake deficit and turbulence predictions in the intermediate-wake region and both quantities compared within 10% of the experiments. The improved prediction by DES is because of its ability to predict the tip vortex breakdown, which plays a critical role in the wake recovery, especially for higher tip speed ratios (λ). However, DES significantly underpredicted the turbulence predictions in the near-wake region, which could be partly due to the negligence of free-surface effects and partly due to modeling issues, namely modeled stress depletion. The study reveals that the tip vortex breakdown mechanism depends on λ. For lower values of λ, instabilities generated in the root vortex core are identified to be the cause of breakdown. For higher values, the breakdown occurred because of the instabilities generated during the vortex filament entanglement. Future work should focus on investigation of other hybrid RANS/LES models to address the limitations of the DES models, and extension of the study to include free-surface effects.

Keywords: Hydrokinetic turbine; Computational fluid dynamics; Turbulence models; Wake validation and recovery (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121014877
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:182:y:2022:i:c:p:725-750

DOI: 10.1016/j.renene.2021.10.030

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:725-750