EconPapers    
Economics at your fingertips  
 

Rational assessment and selection of air source heat pump system operating with CO2 and R407C for electric bus

Haidan Wang, Yulong Song, Yiyou Qiao, Shengbo Li and Feng Cao

Renewable Energy, 2022, vol. 182, issue C, 86-101

Abstract: Heat pump technology has gained surging interests due to its abilities in reducing the battery burden of the electric bus. Here, three heat pump systems for an 8 m bus are compared, including a R407C system, a basic transcritical CO2 system (CO2-BASE), and a transcritical CO2 system with an expansion-compression integrated machine (CO2-Advanced). The results demonstrate that the optimal ratio of the theoretical volume of the expander to the compressor in expander-compressor machine can improve the coefficient of performance (COP) of the CO2-BASE system in all cooling conditions, with a range of 0.165–0.190. The COP of the CO2-Advanced system has 13.59% improvement than that of the R407C system at most in cooling mode. In addition, the performances of the three systems run in five typical climates in China are compared. The comparison result shows that the CO2-BASE system is more suitable for Severe Cold Zone and Mild Zone, and the R407C system performs better in Hot summer and Warm winter Zone. However, the CO2-Advanced system, which has the best energy-saving effect in all climate zones in China, has a great potential to replace the existing R407C system for electric buses.

Keywords: Transcritical CO2 system; Heat pump technology; Electric bus; Seasonal performance factor; Expansion-compression integrated machine; R407C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121014579
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:182:y:2022:i:c:p:86-101

DOI: 10.1016/j.renene.2021.10.009

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:86-101